An insight in magnetic field enhanced zero-valent iron/H2O2 Fenton-like systems: Critical role and evolution of the pristine iron oxides layer
نویسندگان
چکیده
This study demonstrated the synergistic degradation of 4-chlorophenol (4-CP) achieved in a magnetic field (MF) enhanced zero-valent iron (ZVI)/H2O2 Fenton-like (FL) system and revealed an interesting correlative dependence relationship between MF and the pristine iron oxides layer (FexOy) on ZVI particles. First, a comparative investigation between the FL and MF-FL systems was conducted under different experimental conditions. The MF-FL system could suppress the duration of initial lag degradation phase one order of magnitude in addition of the significant enhancement in overall 4-CP degradation. Monitoring of intermediates/products indicated that MF would just accelerate the Fenton reactions to produce hydroxyl radical more rapidly. Evolutions of simultaneously released dissolved iron species suggested that MF would not only improve mass-transfer of the initial heterogeneous reactions, but also modify the pristine ZVI surface. Characterizations of the specific prepared ZVI samples evidenced that MF would induce a special evolution mechanism of the ZVI particles surface depending on the existence of FexOy layer. It comprised of an initial rapid point dissolution of FexOy and a following pitting corrosion of the exposed Fe(0) reactive sites, finally leading to appearance of a particular rugged surface topography with numerous adjacent Fe(0) pits and FexOy tubercles.
منابع مشابه
Soil Remediation Using Nano Zero-valent Iron Synthesized by an Ultrasonic Method
A new method for the synthesis of nano zero-valent iron (nZVI) was developed in the present study. Ultrasonic waves, as a novel method, were used to synthesize the nanoparticles. The morphology and surface compositions of the particles were characterized by using FESEM, XRD, BET, and particle size analyzer. The synthesized nanoparticles were then utilized as a Fenton-like catalyst to degrade of...
متن کاملEnhanced Fenton-like Degradation of Trichloroethylene by Hydrogen Peroxide Activated with Nanoscale Zero Valent Iron Loaded on Biochar
Composite of nanoscale Zero Valent Iron (nZVI) loaded on Biochar (BC) was prepared and characterized as hydrogen peroxide (H2O2) activator for the degradation of trichloroethylene (TCE). nZVI is homogeneously loaded on lamellarly structured BC surfaces to form nZVI/BC with specific surface area (SBET) of 184.91 m2 g-1, which can efficiently activate H2O2 to achieve TCE degradation efficiency of...
متن کاملبررسی کارایی فرایند فنتون اصلاحی با نانو ذرات آهن در کاهش نیترات از محیط آبی
Backgrounds and Objectives: Nowadays, global concerns about nitrate in groundwater and its adverse impact on health have increased. This study aims to evaluate the efficiency of nitrate reduction from aqueous solution through modified Fenton process using Nano scale zero-valent iron. Material and Methods: This research was an experimental study and performed at laboratory scale. Nitrate reducti...
متن کاملکاربرد فرایند شبه فنتون مبتنی بر نانواکسیدهای آهن در حذف پایرن از خاکهای آلوده
Background and objectives: Because of problems dealing with bioremediation including being time consuming, low efficiency and toxicity to biota, application of advanced oxidation processes with higher efficiency and shorter remediation time have been considered for removal of hydrophobic hydrocarbons from contaminated soils. A great interest has been directed to Fenton oxidation because of its ...
متن کاملNew Method of Synthesis of Stable Zero Valent Iron Nanoparticles (Nzvi) by Chelating Agent Diethylene Triamine Penta Acetic Acid (DTPA) and Removal of Radioactive Uranium From Ground Water by using Iron Nanoparticle
Nowdays, iron nanoparticles due to their unique characteristics are used in all of sciences and technology. These nano particles due to their electrical, magnetic, optical and catalytic properties and having high area and activity that is promped by their small size and most importantly many scientists from the entire world are interested in th...
متن کامل